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The objective of this talk is to present a comprehensive group-theoretical
symmetry analysis for two distinct forms of the supersymmetric sine-Gordon
equation. First, we study a system of partial differential equations corresponding
to the coefficients of the various powers of the fermionic independent variables.
Next, we turn our attention to the super—sine—-Gordon equation expressed in
terms of a bosonic superfield involving fermionic independent variables. In each
case, we use a generalization of the method of prolongation in order to determine
the Lie (super)algebra of symmetries, and we present a systematic classification
of all one-dimensional subalgebras of this resulting Lie (super)algebra. The
method of symmetry reduction then allows us to derive invariant solutions of the
supersymmetric sine—-Gordon model. Several new types of algebraic, hyperbolic
and doubly periodic solutions are obtained in explicit form.

Background
The (1 + 1)-dimensional sine-Gordon equation
Ugpr = SiNU. (1)

has applications in various areas of physics (see e.g. [1, 2] and references therein)
and also has great significance in mathematics, especially in the soliton theory
of surfaces [2, 3, 4]. More recently, a supersymmetric extension has been es-
tablished for the sine-Gordon equation (1) and a number of significant results
have been determined [5, 6, 7, 8]. For instance, it has been shown [6] that the
equation of motion appears as the compatibility condition of a set of Riccati
equations.
The supersymmetric sine-Gordon equation is constructed on the 4-dimensional

Grassmannian superspace {(x,t,0;,65)}. Here, the variables @ and ¢ represent
the bosonic coordinates of 2-dimensional Minkowski space, while the quantities



01 and 0y are anticommuting fermionic variables. The bosonic function u(z,t)
is replaced by the scalar bosonic superfield

® (z,t,01,02) = %u(x, t) 4+ 010(x,t) + O29(x, t) + 6102 F (x, t), (2)

where ¢ and 1 are fermionic-valued fields and F' is a bosonic field. The super-
symmetric extension of the sine-Gordon equation (1) is constructed in such a
way that it is invariant under the supersymmetry generators

Qr = 9o, — 010, and Q¢ = Og, — 020;. (3)

This is ensured by writing the supersymmetric sine-Gordon equation is terms
of the covariant derivative operators

Dy =08, + 0,0, and Dy =0y, + 620, (4)

which possess the property that they anticommute with the supersymmetry gen-
erators (3). The supersymmetric sine-Gordon equation is given by the equation

D,D,® = sin . (5)

The Lie superalgebra of the superfield form of the supersymmetric sine—
Gordon equation (5) is spanned by the following five infinitesimal symmetries:
two translations (in the x and ¢ directions), one scaling transformation involving
the independent variables, and the two supersymmetry transformations (3).
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