The staircase method: Lax-pairs, integrals and integrating factors of $O\Delta E$'s.

$\underline{\text{Omar Rojas}^1} \quad \text{G.R.W. Quispel}^1, \qquad \text{P. van der Kamp}^1$ April 23, 2007

1. Department of Mathematics. La Trobe University. Victoria, 3086 (Australia).

We give Lax-pairs for ordinary difference equations $(O\Delta E's)$ $f_n = 0$, obtained by (z_1, z_2) -traveling-wave reductions from integrable partial difference equations $(P\Delta E's)$ $f_{l,m} = 0$ [1]. From the Lax-equation for $P\Delta E's$, namely $L_{l,m}M_{l,m}^{-1} - M_{l+1,m}^{-1}L_{l,m+1} = f_{l,m}N_{l,m}$, in which the matrices $L_{l,m}, M_{l,m}, N_{l,m}$ depend on a spectral parameter k and $N_{l,m}$ is nonsingular on the equation [2] we construct, using the standard-staircase method, the monodromy matrix \mathcal{L}_n and an auxiliary matrix \mathcal{M}_n such that

$$\mathcal{M}_n \mathcal{L}_n - \mathcal{L}_{n+1} \mathcal{M}_n = f_n \mathcal{N}_n$$

holds. It follows that the trace of the monodromy matrix is invariant, that is

$$\operatorname{tr}(\mathcal{L}_{n+1}) - \operatorname{tr}(\mathcal{L}_n) = f_n \Lambda_n,$$

with integrating factor $\Lambda_n = -\operatorname{tr}(N_n M_n \mathcal{L}_n L_n^{-1})$. Taking $z_1 = 1$ the coefficients of the k-expansion of the trace of the monodromy matrix $\operatorname{tr}(\mathcal{L}_n)$, and of the integrating factor Λ_n , are linear in terms of certain multi-sums of products Θ . For general z_1 we expect the invariants to be polynomial in the Θ 's of degree z_1 .

References

- G.R.W. Quispel, H.W. Capel, V.G. Papageorgiou and F.W. Nijhoff. Integrable mappings derived from soliton equations. *Physica A*, **173** (243–266), 1991.
- [2] G.R.W. Quispel, H.W. Capel, J.A.G. Roberts. Duality for discrete integrable systems J. Phys. A: Math. Gen, 38 (3965–3980), 2005.