Faster than Hermitian Quantum Mechanics

Carl M. Bender1,2

1. Physics Department, Washington University in St. Louis
2. Center for Nonlinear Studies, Los Alamos National Laboratory

Given initial and final quantum states $|I\rangle$ and $|F\rangle$, there exist Hamiltonians H under which $|I\rangle$ evolves into $|F\rangle$. The quantum brachistochrone problem is to find the Hamiltonian that achieves this transformation in the least time τ, subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed. For Hermitian Hamiltonians τ has a nonzero lower bound. However, for non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, τ can be made arbitrarily small. This does not violate the time-energy uncertainty principle because for such Hamiltonians the path from $|I\rangle$ to $|F\rangle$ can be made short. The mechanism is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing.